mML第123号

【修得の難易度】★〜★★☆箱の中身を巧妙に抜き取る「ピックポケット」とボストンボックスの基礎を学ぶ!

 今月号では、「箱の中身を巧妙に抜き取る『ピックポケット』とボストンボックスの基礎を学ぶ!」と題しまして、計5手順をご紹介いたします。

 今回は、コインボックスのセカンドステージとして、ボストンボックスを取り上げました。「オキトボックス」をレギュラーのコインボックスとすると、この「ボストンボックス」は一番の基礎となる最重要のギミック・コインボックスという位置づけとなります。  2つのカップとボストンボックスを使う「ティー・フォー・ツー」は、道具立てからしてクラシックな風格ある手順で、コメディタッチの演出の元にシレッと秘密の操作を完了させてしまう頭の良い手順です。そして「ボックスト・コインルーティーン」は、コインマジックの手順のフレームワークとしてボストンボックスを活用するという演出上のアイデアが秀逸です。

 またカードマジックでは3手順をご紹介しておりますが、中でも「ジェームズ・ミラクル」は、2人の観客がそれぞれ思った数字を使って、クロスオーバーで互いに相手の数字を「当てて」しまう、という奇妙な現象の作品です。加えてクライマックスもある完全なセルフワーキングトリックで、自動的に現象が起こるので、演じているマジシャン自身も不思議です。  「アルティメット・トゥルース」は、カードを使って簡易型の「ウソ発見器」を作る、という魅力的な演出です。観客への質問に対する反応でカードを当てていく対話型の楽しいトリックを、完全に即興で演じられるように仕上げてあります。  「ピックポケット」は、スリのテクニックを使ってカードケースからカードを抜き取ってみせるという、こちらも演出的に面白いストーリーマジックとなっています。その中で、フラットパームという有効な技法も紹介いたします。  それぞれに独特の魅力を放つ3作品を、ぜひお楽しみください。

 さらに、今回も「ワークショップ」と「実践派のためのクイックマジック」のコーナーを加え、充実した内容でお届けいたします。

特集:自動的に起こる奇跡!

ジェームズ・ミラクル(Stewart James/ゆうきとも
1 人目の観客には1 ? 5、2 人目の観客には6 ? 10 の中から、好きな数字を自由に決めてもらいます。 1 人目の数字の枚数だけ配ると、2人目の数字のカードが現れ、2 人目の数字の枚数だけ配ると、1 人目の数字のカードが現れます! そして、2 人の数字を合計した枚数を配ると、なんと、あらかじめ予言されたカードが現れるのです!
アルティメット・トゥルース(Peter Duffie/ゆうきとも
1 枚のカードを選んで覚えてもらい、デックに戻して混ぜます。 マジシャンは、候補となるカードを12 枚ほど抜き出し、それで「簡易型のウソ発見器」を作ります。 選ばれたカードの色・奇偶・マークなどを観客に尋ねながら操作すると、カード自体が、それが本当かどうか、答えを導き出してくれて…最後に選んだカードそのものが現れます!
ピックポケット(Brother John Hamman)
カードケースに2 枚のカードを入れて、ケースをデックで挟んでガードします。 しかしスリのテクニックで、演者はその2 枚を密かに抜き取って取り出してしまいます。 さらに、このテクニックを逆に活用して、最初に選ばれたカードを、ケースの中に飛び込ませてしまうのです!

特集:ボストンボックスの新旧名手順!

ボックスト・コインルーティーン(福士弘行/ゆうきとも
コインがちょうど4 枚入った容器を取り出し、容器を傾けて中のコインを出します。 その4 枚を使って、何らかのマジックを行っては、コインを順次ボックスにしまって枚数を減らしていきます。 4 枚ともボックスにしまった後、最後におまじないをかけると、コインは4 枚ともボックスから消えて、反対の手から現れます!
ティー・フォー・ツー(Ken Brooke)
2つの空のカップを取り出して示し、テーブルの左右に並べて、伏せて置きます。 コインボックスに4 枚のコインを入れて、一方のカップの下に入れます。 おまじないをかけて、2 つのカップを持ち上げると、なんと、コインボックスは空になっていて、4 枚のコインは、もう一方のカップの下から現れるのです!

特集:ワークショップ

ラストトリック(mML第13号より)

特集:実践派のためのクイックマジック

コイン・ピークス

この号で収録されている技法・用語

Stewart James、Peter Duffie、Brother John Hamman、福士弘行、Ken Brooke、フラットパーム、ターンオーバー・ムーブ


トップ   差分 バックアップ リロード   一覧 単語検索 最終更新   ヘルプ   最終更新のRSS
Last-modified: 2016-11-13 (日) 21:29:45 (1199d)